转自 量子位
AI造出的假图片恐怕很难再骗过AI了。
连英伟达本月刚上线的StyleGAN2也被攻破了。即使是人眼都分辨看不出来假脸图片,还是可以被AI正确鉴别。
最新研究发现,只要用让AI学会鉴别某一只GAN生成的假图片,它就掌握了鉴别各种假图的能力。
不论是GAN生成的,Deepfake的,超分辨率的,还是怎样得来的,只要是AI合成图片,都可以拿一个通用的模型检测出来。
尽管各种CNN的原理架构完全不同,但是并不影响检测器发现造假的通病。
只要做好适当的预处理和后处理,以及适当的数据扩增,便可以鉴定图片是真是假,不论训练集里有没有那只AI的作品。
这就是Adobe和UC伯克利的科学家们发表的新成果。
有网友表示,如果他们把这项研究用来参加Kaggle的假脸识别大赛,那么将有可能获得最高50万美元奖金。
然而他们并没有,而是先在ArXiv公布了预印本,并且还被CVPR 2020收录。
最近,他们甚至将论文代码在GitHub上开源,还提供了训练后的权重供读者下载。
造出7万多张假图
要考验AI鉴别假货的能力,论文的第一作者、来自伯克利的学生Wang Sheng-Yu用11种模型生成了不同的图片,涵盖了各种CNN架构、数据集和损失。
所有这些模型都具有上采样卷积结构,通过一系列卷积运算和放大操作来生成图像,这是CNN生成图像最常见的设计。
有ProGAN、StyleGAN、BigGAN、BigGAN、GauGAN等等,这些GAN各有特色。
ProGAN和StyleGAN为每个类别训练不同的网络;StyleGAN将较大的像素噪声注入模型,引入高频细节;BigGAN具有整体式的类条件结构;进行图像转换的GauGAN、CycleGAN、StarGAN。
除了GAN以外,还有其他处理图片的神经网络:
- 直接优化感知损失 ,无需对抗训练的级联细化网络(CRN);
- 条件图像转换模型隐式最大似然估计(IMLE);
- 改善低光照曝光不足的SITD模型;
- 超分辨率模型,即二阶注意力网络(SAN);
- 用于换脸的的开源DeepFake工具faceswap。
主流图片处理CNN模型应有尽有。他们总共造出了7万多张“假图”。
继续阅读