分类目录归档:图神经网络

【图深度学习时代降临】清华朱文武组一文综述GraphDL五类模型

转自 新智元

要说最近学界值得关注的趋势,图神经网络(Graph Neural Network, GNN)或者说图深度学习(Graph Deep Learning)绝对算得上一个。

昨天,阿里巴巴达摩院发布2019十大技术趋势,其中就包括“超大规模图神经网络系统将赋予机器常识”:

单纯的深度学习已经成熟,而结合了深度学习的图神经网络将端到端学习与归纳推理相结合,有望解决深度学习无法处理的关系推理、可解释性等一系列问题。强大的图神经网络将会类似于由神经元等节点所形成网络的人的大脑,机器有望成为具备常识,具有理解、认知能力的AI。

此前,新智元曾经报道过清华大学孙茂松教授组对图神经网络(GNN)的综述(arxiv预印版),全面阐述了GNN及其方法和应用,便于读者快速了解GNN领域不同模型的动机与优势。

今天,新智元再介绍另一篇清华大学与GNN有关的综述,这次是朱文武教授组发布在arxiv的预印版论文 Deep Learning on Graphs: A Survey

继续阅读

掌握图神经网络GNN基本,看这篇文章就够了

转自 新智元

最近,图神经网络 (GNN) 在各个领域越来越受到欢迎,包括社交网络、知识图谱、推荐系统,甚至生命科学。

GNN 在对图形中节点间的依赖关系进行建模方面能力强大,使得图分析相关的研究领域取得了突破性进展。本文旨在介绍图神经网络的基本知识,以及两种更高级的算法:DeepWalk 和 GraphSage

继续阅读

解决关系推理,从图网络入手!DeepMind图网络库开源了!

转自 新智元

DeepMind提出的简单而强大的关系推理网络“graph network”终于开源了!

今年6月,由DeepMind、谷歌大脑、MIT 和爱丁堡大学等公司和机构的 27 位科学家共同发表了一篇论文Relational inductive biases, deep learning, and graph networks,提出了图网络(graph network)的概念。“让深度学习也能因果推理”,这篇论文引起了业内的大量关注。

继续阅读

为什么说图网络是 AI 的未来?

转自 新智元

– 1 –

回顾 2018 年机器学习的进展,2018年6月 DeepMind 团队发表的论文 “Relational inductive biases, deep learning, and graph networks”,是一篇重要的论文,引起业界热议。

随后,很多学者沿着他们的思路,继续研究,其中包括清华大学孙茂松团队。他们于2018年12月,发表了一篇综述,题目是“Graph neural networks: A review of methods and applications”

继续阅读

图神经网络将成AI下一拐点!MIT斯坦福一文综述GNN到底有多强

转自 AI前线

AI 前线导读: 深度学习在图像分类,机器翻译等领域都展示了其强大的能力,但是在因果推理方面,深度学习依然是短板,图神经网络在因果推理方面有巨大的潜力,有望成为 AI 的下一个拐点。DeepMind 公司最近开源了其 GraphNet 算法库,各大巨头公司也纷纷投入大量资源研究图神经网络,本文是 AI 前线第 68 篇论文导读,下面我们来深入了解图神经网络背后的原理和其强大的表征能力。

继续阅读

【技术干货分享】AI反欺诈算法:图神经网络(GNN)

转自 同盾反欺诈服务 https://mp.weixin.qq.com/s/3J4riS6R_UrE_5rn2lnCBA

图神经网络(GNN)最早是Franco Scarselli和Marco Gori等人在论文《The Graph Neural Network Model》中提出的,它拓展了已有的神经网络模型,用于处理图或者网络结构的数据。图神经网络已经是一个AI未来重要的发展方向。

继续阅读

浅析图卷积神经网络

转自 极验https://mp.weixin.qq.com/s/356WvVn1Tz0axsKd8LJW4Q

今天想和大家分享的是图卷积神经网络。随着人工智能发展,很多人都听说过机器学习、深度学习、卷积神经网络这些概念。但图卷积神经网络,却不多人提起。那什么是图卷积神经网络呢?简单的来说就是其研究的对象是图数据(Graph),研究的模型是卷积神经网络。

继续阅读

【荟萃】图神经网络论文列表,包含GNN理论及其在NLP和CV等领域的应用

转自 专知 https://mp.weixin.qq.com/s/XC02rQfHVhWl_3YrkPBUDA

【导读】图卷积网络等图神经网络(GNN)是目前深度学习领域最火的研究方向之一。图可以用来刻画现实世界中的很多问题,GNN在很多领域取得了非常好的效果。本文给出最新的GNN论文列表,及其在NLP和CV等领域的应用。

继续阅读